• BlanK0@lemmy.ml
    link
    fedilink
    arrow-up
    4
    ·
    edit-2
    5 months ago

    I would rather see more investment on better renewable tech then relaying on biohazard.

    You would be surprised to know the amount of scientific research with actual solutions that aren’t applied cause goes against the fossil fuel companies and whatnot. Due to the fact that they have market monopoly.

    • The Stoned Hacker@lemmy.world
      link
      fedilink
      arrow-up
      1
      arrow-down
      1
      ·
      5 months ago

      Nuclear is the best and most sustainable energy production long term. You get left with nuclear waste which we are still figuring out how to deal with, but contemporary reactors are getting safer and more efficient. Not to mention breeder reactors can use the byproducts of their energy production to further produce energy.

    • UnderpantsWeevil@lemmy.world
      link
      fedilink
      arrow-up
      1
      arrow-down
      1
      ·
      5 months ago

      I would rather see more investment on better renewable tech then relaying on biohazard.

      Modern nuclear energy produces significantly less waste and involves more fuel recycling than the historical predecessors. But these reactors are more expensive to build and run, which means smaller profit margins and longer profit tails.

      Solar and Wind are popular in large part because you can build them up and profit off them quickly in a high-priced electricity market (making Texas’s insanely expensive ERCOT system a popular location for new green development, paradoxically). But nuclear power provides a cheap and clean base load that we’re only able to get from coal and natural gas, atm. If you really want to get off fossil fuels entirely, nuclear is the next logical step.

      • noobnarski@feddit.de
        link
        fedilink
        arrow-up
        2
        arrow-down
        1
        ·
        5 months ago

        Every commercial fuel recycling plant in existence releases large amounts of radioactivity into the air and water, so I dont really see them as a good alternative.

        Here is a world map of iodine 129 before fukushima, its one of many radioactive isotopes released at nuclear reprocessing plants: https://pubchem.ncbi.nlm.nih.gov/images/iupac/j_pac-2015-0703_fig_076.jpg The website where I got it from: https://pubchem.ncbi.nlm.nih.gov/element/Iodine#section=Isotopes-in-Forensic-Science-and-Anthropology

        Considering how long it would take to build safe reactors, how expensive it would be and how much radioactive contamination would be created both at the production of fuel and later when the storage ever goes wrong after thousands of years, I just dont see any reason to ever invest into it nowadays, when renewables and batteries have gotten so good.

        • UnderpantsWeevil@lemmy.world
          link
          fedilink
          arrow-up
          2
          ·
          5 months ago

          I just dont see any reason to ever invest into it nowadays, when renewables and batteries have gotten so good.

          Renewables and batteries have their own problems.

          Producing and processing cobalt and lithium under current conditions will mean engaging in large-scale deforestation in some of the last unmolested corners of the planet, producing enormous amounts of toxic waste as part of the refinement process, and then getting these big bricks of lithium (not to mention cadmium, mercury, and lead) that we need to dispose of at the battery’s end of lifecycle.

          Renewables - particularly hydropower, one of the most dense and efficient forms of renewable energy - can deform natural waterways and collapse local ecologies. Solar plants have an enormous geographic footprint. These big wind turbines still need to be produced, maintained, and disposed of with different kinds of plastics, alloys, and battery components.

          Which isn’t even to say these are bad ideas. But everything we do requires an eye towards the long-term lifecycle of the generators and efficient recycling/disposal at their end.

          Nuclear power isn’t any different. If we don’t operate plants with the intention of producing fissile materials, they run a lot cleaner. We can even power grids off of thorium. Molten salt reactors do an excellent job of maximizing the return on release of energy, while minimizing the risk of a meltdown. Our fifth generation nuclear engines can use this technology and the only thing holding us back is ramping it up.

          Unlike modern batteries, nuclear power doesn’t require anywhere near the same amount of cobalt, lithium, nickel and manganese. Uranium is surprisingly cheap and abundant, with seawater yielding a pound of enrichable uranium at the cost of $100-$200 (which then yields electricity under $.10/kwh).

          We can definitely do renewables in a destructive and unsustainable way, recklessly mining and deforesting the plant to churn out single-use batteries. And we can do nuclear power in a responsible and efficient way, recycling fuel and containing the relatively low volume of highly toxic waste.

          But all of that is a consequence of economic policy. Its much less a consequence of choosing which fuel source to use.

      • BlanK0@lemmy.ml
        link
        fedilink
        arrow-up
        1
        ·
        5 months ago

        Economicaly might be viable, but there is so much unused experimental tech that has higher potential and scales better (higher scientific development as well).